Package: elastes (via r-universe)

October 21, 2024

Type Package

Title Elastic Full Procrustes Means for Sparse and Irregular Planar Curves

Version 0.1.7.9000

Description Provides functions for the computation of functional elastic shape means over sets of open planar curves. The package is particularly suitable for settings where these curves are only sparsely and irregularly observed. It uses a novel approach for elastic shape mean estimation, where planar curves are treated as complex functions and a full Procrustes mean is estimated from the corresponding smoothed Hermitian covariance surface. This is combined with the methods for elastic mean estimation proposed in Steyer, Stöcker, Greven (2022) <doi:10.1111/biom.13706>. See Stöcker et. al. (2022) <arXiv:2203.10522> for details.

License GPL (>= 3) Encoding UTF-8 Language en-US

Imports elasdics, utils, graphics, stats, splines, mgcv, sparseFLMM, orthogonalsplinebasis

Suggests knitr, covr, testthat (>= 3.0.0), rmarkdown, shapes

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Config/testthat/edition 3

VignetteBuilder knitr

URL https://mpff.github.io/elastes/, https://github.com/mpff/elastes

BugReports https://github.com/mpff/elastes/issues

Repository https://mpff.r-universe.dev **RemoteUrl** https://github.com/mpff/elastes

RemoteRef HEAD

RemoteSha 1532ed3093f642c8b77ddf15749393ad7c9e374d

12

Contents

compute_elastic_shape_mean	2
fit_alignment_proc2d	4
fit_mean	5
get_center	6
get_distance	7
get_evals	7
get_optimal_t	8
get_polygon_length	9
get_procrustes_fit	9
get_Procrustes_fit_from_param	10
plot.elastic_shape_mean	10

compute_elastic_shape_mean

Compute an elastic full Procrustes mean for a collection of curves

Description

Computes an elastic full Procrustes mean for curves stored in data_curves. Constructor function for class elastic_shape_mean.

Usage

Index

```
compute_elastic_shape_mean(
  data_curves,
  knots = seq(0, 1, len = 13),
  type = c("smooth", "polygon"),
  penalty = 2,
  var_type = c("smooth", "constant", "zero"),
  pfit_method = c("smooth", "polygon"),
  smooth_warp = function(i) 0,
  eps = 0.05,
  max_iter = 50,
  verbose = FALSE,
  cluster = NULL
)
```

Arguments

data_curves list of data. frames with observed points in each row. Each variable is one coordinate direction. If there is a variable t, it is treated as the time parametrization,

not as an additional coordinate.

knots set of knots for the mean spline curve

if "smooth" linear srv-splines are used which results in a differentiable mean type curve if "polygon" the mean will be piecewise linear. the penalty to use in the covariance smoothing step. use '-1' for no penalty. penalty (experimental) assume "smooth", "constant" or "zero" measurement-error varivar_type ance along t pfit_method (experimental) "smooth" or "polygon" (experimental) controls the weighting of original and smoothed observations smooth_warp over the iterations, if pfit_method == "smooth". the algorithm stops if L2 norm of coefficients changes by less than eps eps

max_iter maximal number of iterations

verbose print iterations

(experimental) use the parallel package for faster computation cluster

Value

an object of class elastic_shape_mean, which is a list with entries

"smooth" if mean was modeled using linear srv-splines, "polygon" if constant type

srv-splines

coefs spline coefficients

knots spline knots

variance sample elastic shape variance

data_curves list of data. frames with observed points in each row. First variable t gives

> the initial parametrization, second variable t_optim the optimal parametrization when the curve is aligned to the mean. Has the attributes 'rotation', 'scaling', 'translation' and 'dist_to_mean'. Use get_procrustes_fit to get the elastic

full Procrustes fit.

see fit_mean fit

Examples

```
curve <- function(t){</pre>
  rbind(t*cos(13*t), t*sin(13*t))
}
set.seed(18)
data_curves <- lapply(1:4, function(i){</pre>
  m <- sample(10:15, 1)
  delta \leftarrow abs(rnorm(m, mean = 1, sd = 0.05))
  t <- cumsum(delta)/sum(delta)</pre>
  data.frame(t(curve(t)) + 0.07*t*matrix(cumsum(rnorm(2*length(delta))),
              ncol = 2)
})
#randomly rotate and scale curves
rand_scale <- function(curve){ ( 0.5 + runif(1) ) * curve }</pre>
rand_rotate <- function(curve){</pre>
  names <- colnames(curve)</pre>
```

```
theta <- 2*pi*runif(1)</pre>
  mat <- matrix(c(cos(theta), sin(theta), -sin(theta), cos(theta)), nrow = 2, ncol = 2)</pre>
  curve.rot <- as.matrix(curve) %*% t(mat)</pre>
  curve.rot <- as.data.frame(curve.rot)</pre>
  colnames(curve.rot) <- names</pre>
  return(curve.rot)
data_curves <- lapply(data_curves, rand_scale)</pre>
data_curves <- lapply(data_curves, rand_rotate)</pre>
#compute smooth procrustes mean with 2 order penalty
knots \leftarrow seq(0,1, length = 11)
elastic_shape_mean <- compute_elastic_shape_mean(</pre>
    data_curves,
    knots = knots,
    type = "smooth",
    penalty = 2
plot(elastic_shape_mean)
```

fit_alignment_proc2d Optimal rotation and scaling alignment to a smooth curve

Description

Finds optimal rotation and scaling alignment for a discrete open srv curve to a smooth curve

Usage

```
fit_alignment_proc2d(
   q,
   type,
   knots,
   var_type,
   coefs.compl,
   method,
   cov_fit,
   pca,
   L
)
```

Arguments

fit_mean 5

```
coefs.compl complex coefficients of smooth curve
method temp
cov_fit temp
pca temp
L temp
```

Value

optimal rotation G and scaling b

fit_mean

Mean estimation for open planar curves.

Description

Fits an elastic full Procrustes mean for open, planar curves. Is usually called from compute_elastic_shape_mean.

Usage

```
fit_mean(
    srv_data_curves,
    knots,
    penalty,
    var_type,
    pfit_method,
    max_iter,
    type,
    eps,
    cluster,
    verbose,
    smooth_warp
)
```

Arguments

```
srv_data_curves
```

list of data. frames with srv vectors in each row.curves

knots set of knots for the mean spline curve

penalty the penalty to use in the covariance smoothing step. use '-1' for no penalty.

var_type (experimental) assume "smooth", "constant" or "zero" measurement-error vari-

ance along t

pfit_method (experimental) "smooth" or "polygon"

max_iter maximal number of iterations

type if "smooth" linear srv-splines are used which results in a differentiable mean

curve if "polygon" the mean will be piecewise linear.

get_center

eps the algorithm stops if L2 norm of coefficients changes less

cluster a cluster object for use in the bam call

verbose print iterations

smooth_warp (experimental) controls the weighting of original and smoothed observations

over the iterations, if pfit_method == "smooth".

Value

a list with entries

type "smooth" or "polygon"

coefs coefs srv spline coefficients of the estimated mean

knots spline knots

penalty penalty used in the covariance estimation

distances distances to mean

fit a list containing t_optimsoptimal parametrizations G_optimsoptimal rota-

tions b_optimsoptimal scalings n_optimsoptimal re-normalization n_iternumber of iterations until convergence gram the mean basis Gram matrix, cov_fit the covariance smoothing objects in the final iteration, cov_pca cov coef matrix pca object in the final iteration and pfit_coefs the mean basis coefs of smoothed

pfits in the final iteration

get_center Calculate the center of a curve

Description

Calculate the center of a curve

Usage

get_center(curve)

Arguments

curve a data.frame with observed points in each row. Each variable is one coordi-

nate direction. If there is a variable t, t_optim or id, it is treated as the time

parametrization, not as an additional coordinate.

Value

The average of observed points in curve.

get_distance 7

	-1:			
get	a1	Sτ	an	ce

Distance to a smooth curve

Description

Finds the distance of a discrete open srv curve to a smooth curve

Usage

```
get_distance(srv_curve, s, q, eps = 10 * .Machine$double.eps)
```

Arguments

srv_curve	srv transformation of the smooth curve, needs to be vectorized
S	time points for q, first has to be 0, last has to be 1
q	square root velocity vectors, one less than time points in s
eps	convergence tolerance

Value

distance between srv_curve and q

get_evals

Evaluate a curve on a grid

Description

Evaluate a curve on a grid

Usage

```
get_evals(curve, t_grid = NULL, ...)
## S3 method for class 'data.frame'
get_evals(curve, t_grid = NULL, ...)
## S3 method for class 'elastic_shape_mean'
get_evals(curve, t_grid = NULL, centering = TRUE, srv = FALSE, ...)
```

8 get_optimal_t

Arguments

curve a one parameter function which is to be evaluated on a grid

t_grid the curve is evaluated at the values in t_grid, first value needs to be 0, last value

needs to be 1. If t_grid = NULL, a default regular grid with grid length 0.01 is

chosen

... other arguments

centering TRUE if curves shall be centered srv TRUE if SRV curve shall be evaluated

Value

a data. frame with evaluations of the curve at the values in t_grid in its rows.

See Also

See get_evals for the original code.

Examples

```
curve <- function(t){c(t*sin(10*t), t*cos(10*t))}
plot(get_evals(curve), type = "b")</pre>
```

get_optimal_t

Finds optimal alignment for discrete open curves

Description

Finds optimal aligned time points for srv curve q to srv curve p using coordinate wise optimization.

Usage

```
get_optimal_t(srv_procrustes_curves, coefs, t_optims, type, knots, eps, i)
```

Arguments

srv_procrustes_curves

scaling and rotation aligned srv curves

coefs mean coefficients

t_optims current optimal parametrization

type "smooth" or "polygon" knots mean basis knots eps convergence tolerance

i current iteration

get_polygon_length 9

Value

optimal time points for srv_data_curves, without first value 0 and last value 1 optimal time points have the distance of the observation to the srv_curve as an attribute

get_polygon_length

Calculate the polygon length of a curve

Description

Calculate the polygon length of a curve

Usage

```
get_polygon_length(curve)
```

Arguments

curve

a data.frame with observed points in each row. Each variable is one coordinate direction. If there is a variable t, t_optim or id, it is treated as the time parametrization, not as an additional coordinate.

Value

The length of curve, treating it as a polygon.

get_procrustes_fit

Get Procrustes data curve from mean object.

Description

Compute the Procrustes aligned data curve...

Usage

```
get_procrustes_fit(data_curve)
```

Arguments

data_curve

A data.frame in an elastic_shape_mean object.

Value

Aligned data_curve as a data.frame.

```
get_Procrustes_fit_from_param
```

Helper functions for calculating Procrustes data curve from rotation, scaling and translation parameters.

Description

Compute the Procrustes fit given optimal rotation, scaling and translation.

Usage

```
get_procrustes_fit_from_param(
  data_curve,
  rot,
  scale,
  plength,
  trans,
  norm_factor
)
```

Arguments

data_curve A data.frame with observed points on a curve. Each row is one point, each

variable one coordinate direction. If there is a variable t, it is treated as the time

parametrization, not as an additional coordinate.

rot The rotation (in radian).

scale The scaling.

plength The polygon length of the original curve.

trans The translation.

norm_factor The normalization factor from the smooth curve estimate.

```
plot.elastic_shape_mean
```

Plot method for planar elastic Procrustes mean curves

Description

Plots objects of class elastic_shape_mean.

Usage

```
## S3 method for class 'elastic_shape_mean'
plot(x, srv = FALSE, centering = TRUE, asp = 1, col = "red", ...)
```

Arguments

Х	object of class elastic_shaped_mean, usually a result of a call to compute_elastic_shape_mean
srv	TRUE if the SRV curve should be plotted
centering	TRUE if mean and pfits should be centered
asp	numeric, giving the aspect ratio of the two coordinates, see plot.window for details.
col	color of the mean curve.
	further plotting parameters.

Value

No return value, called for side effects.

See Also

For examples see documentation of $compute_elastic_shape_mean$. See $plot.elastic_mean$ for the original code.

Index

```
compute_elastic_shape_mean, 2, 5, 11
fit_alignment_proc2d, 4
fit_{mean}, 5
get_center, 6
{\tt get\_distance}, \textcolor{red}{7}
get_evals, 7, 8
{\tt get\_optimal\_t, 8}
get_polygon_length, 9
get\_procrustes\_fit, 3, 9
{\tt get\_Procrustes\_fit\_from\_param,}\ 10
{\tt get\_procrustes\_fit\_from\_param}
          (get_Procrustes_fit_from_param),
          10
plot.elastic_mean, 11
\verb|plot.elastic_shape_mean|, 10
plot.window, 11
```